

TensorGrip L20 Canister Spray Adhesive QUIN GLOBAL ASIA PACIFIC

Chemwatch Haza

Issue Date: **12/07/2022**Print Date: **12/07/2022**S.GHS.AUS.EN

QUIN GLOBAL ASIA PACIFIC
Version No: 3.3

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier		
Product name	TensorGrip L20 Canister Spray Adhesive	
Chemical Name	Not Applicable	
Synonyms	Not Available	
Proper shipping name	CHEMICAL UNDER PRESSURE, FLAMMABLE, N.O.S. (contains LPG (liquefied petroleum gas))	
Chemical formula	Not Applicable	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Adhesives

Details of the supplier of the safety data sheet

Registered company name	QUIN GLOBAL ASIA PACIFIC	
Address	Hincksman Street Queanbeyan, NSW 2620 Australia	
Telephone	2 6175 0574	
Fax	lot Available	
Website	www.quinglobal.com	
Email	sales@quinglobal.com.au	

Emergency telephone number

Association / Organisation	HEMWATCH EMERGENCY RESPONSE	
Emergency telephone numbers	+61 1800 951 288	
Other emergency telephone numbers	+61 3 9573 3188	

Once connected and if the message is not in your prefered language then please dial 01

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule	Not Applicable
Classification [1]	Serious Eye Damage/Eye Irritation Category 2A, Germ Cell Mutagenicity Category 1A, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, Carcinogenicity Category 1A, Gases Under Pressure (Liquefied Gas), Hazardous to the Aquatic Environment Long-Term Hazard Category 3, Flammable Gases Category 1A
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

Signal word

Danger

Hazard statement(s)

H319

Causes serious eye irritation.

Version No: 3.3 Page 2 of 18 Issue Date: 12/07/2022 Print Date: 12/07/2022

TensorGrip L20 Canister Spray Adhesive

H340	May cause genetic defects.
AUH066	Repeated exposure may cause skin dryness and cracking.
H336	May cause drowsiness or dizziness.
AUH044	Risk of explosion if heated under confinement.
H350	May cause cancer.
H280	Contains gas under pressure; may explode if heated.
H412	Harmful to aquatic life with long lasting effects.
H220	Extremely flammable gas.

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.	
P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.	
P271	Use only outdoors or in a well-ventilated area.	
P280	Wear protective gloves, protective clothing, eye protection and face protection.	
P261	void breathing gas	
P273	Avoid release to the environment.	
P264	Wash all exposed external body areas thoroughly after handling.	

Precautionary statement(s) Response

P308+P313	IF exposed or concerned: Get medical advice/ attention.			
P377	eaking gas fire: Do not extinguish, unless leak can be stopped safely.			
P305+P351+P338	EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.			
P312	II a POISON CENTER/doctor/physician/first aider/if you feel unwell.			
P337+P313	eye irritation persists: Get medical advice/attention.			
P381	In case of leakage, eliminate all ignition sources.			
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.			

Precautionary statement(s) Storage

P405	Store locked up.	
P410+P403	rotect from sunlight. Store in a well-ventilated place.	
P403+P233	Store in a well-ventilated place. Keep container tightly closed.	

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

Not Applicable

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name	
68920-06-9	1-8	hydrocarbons, C7-9, n-alkanes, isoalkanes, cyclics	
79-20-9	30-40	methyl acetate	
68476-85-7.	30-40	LPG (liquefied petroleum gas)	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available		

SECTION 4 First aid measures

Description of first aid measures

- If product comes in contact with eyes remove the patient from gas source or contaminated area.
- ▶ Take the patient to the nearest eye wash, shower or other source of clean water.
- ▶ Open the eyelid(s) wide to allow the material to evaporate.
- Figently rinse the affected eye(s) with clean, cool water for at least 15 minutes. Have the patient lie or sit down and tilt the head back. Hold the eyelid(s) open and pour water slowly over the eyeball(s) at the inner corners, letting the water run out of the outer corners.
- The patient may be in great pain and wish to keep the eyes closed. It is important that the material is rinsed from the eyes to prevent further damage.
- **Eye Contact** Figure that the patient looks up, and side to side as the eye is rinsed in order to better reach all parts of the eye(s)
 - ► Transport to hospital or doctor.
 - F Even when no pain persists and vision is good, a doctor should examine the eye as delayed damage may occur.
 - If the patient cannot tolerate light, protect the eyes with a clean, loosely tied bandage.
 - Ensure verbal communication and physical contact with the patient.

DO NOT allow the patient to rub the eyes

DO NOT allow the patient to tightly shut the eyes

Version No: **3.3** Page **3** of **18** Issue Date: **12/07/2022**Print Date: **12/07/2022**Print Date: **12/07/2022**

TensorGrip L20 Canister Spray Adhesive

DO NOT introduce oil or ointment into the eye(s) without medical advice DO NOT use hot or tepid water. If skin contact occurs ▶ Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. In case of cold burns (frost-bite): ▶ Move casualty into warmth before thawing the affected part; if feet are affected carry if possible ▶ Bathe the affected area immediately in luke-warm water (not more than 35 deg C) for 10 to 15 minutes, immersing if possible and without Skin Contact rubbing DO NOT apply hot water or radiant heat ▶ Apply a clean, dry, light dressing of "fluffed-up" dry gauze bandage If a limb is involved, raise and support this to reduce swelling If an adult is involved and where intense pain occurs provide pain killers such as paracetomol Transport to hospital, or doctor ▶ Subsequent blackening of the exposed tissue indicates potential of necrosis, which may require amputation Following exposure to gas, remove the patient from the gas source or contaminated area NOTE: Personal Protective Equipment (PPE), including positive pressure self-contained breathing apparatus may be required to assure the safety of the rescuer. Prostheses such as false teeth, which may block the airway, should be removed, where possible, prior to initiating first aid procedures. If the patient is not breathing spontaneously, administer rescue breathing. If the patient does not have a pulse, administer CPR. Inhalation If medical oxygen and appropriately trained personnel are available, administer 100% oxygen. Summon an emergency ambulance. If an ambulance is not available, contact a physician, hospital, or Poison Control Centre for further ▶ Keep the patient warm, comfortable and at rest while awaiting medical care. MONITOR THE BREATHING AND PULSE, CONTINUOUSLY Administer rescue breathing (preferably with a demand-valve resuscitator, bag-valve mask-device, or pocket mask as trained) or CPR if Not considered a normal route of entry. Ingestion If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of

Indication of any immediate medical attention and special treatment needed

For petroleum distillates

· In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption - decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration.

- Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function.
- Positive pressure ventilation may be necessary.
- Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia.
- After the initial episode,individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated.
- Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications.
- · Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur. Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators.

BP America Product Safety & Toxicology Department

for simple esters:

BASIC TREATMENT

Establish a patent airway with suction where necessary.

- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for pulmonary oedema.
- Monitor and treat, where necessary, for shock.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
- Give activated charcoal.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Fastra an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.

 Proparacaine bydrochloride should b
- Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- Consult a toxicologist as necessary

BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

For frost-bite caused by liquefied petroleum gas:

- If part has not thawed, place in warm water bath (41-46 C) for 15-20 minutes, until the skin turns pink or red.
- Analgesia may be necessary while thawing.
- If there has been a massive exposure, the general body temperature must be depressed, and the patient must be immediately rewarmed by whole-body immersion, in a bath at the above temperature.
- Shock may occur during rewarming.
- Administer tetanus toxoid booster after hospitalization.

Version No: 3.3 Page 4 of 18 Issue Date: 12/07/2022

TensorGrip L20 Canister Spray Adhesive

Print Date: 12/07/2022

- Prophylactic antibiotics may be useful.
- The patient may require anticoagulants and oxygen.

[Shell Australia 22/12/87]

For gas exposures:

BASIC TREATMENT

▶ Establish a patent airway with suction where necessary.

- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for pulmonary oedema .
- Monitor and treat, where necessary, for shock.
- Anticipate seizures.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

BRONSTEIN, A.C. and CURRANCE, P.L.

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

For acute and short term repeated exposures to methanol:

- · Toxicity results from accumulation of formaldehyde/formic acid
- · Clinical signs are usually limited to CNS, eyes and GI tract Severe metabolic acidosis may produce dyspnea and profound systemic effects which may become intractable. All symptomatic patients should have arterial pH measured. Evaluate airway, breathing and circulation.
- Stabilise obtunded patients by giving naloxone, glucose and thiamine.
- Decontaminate with Ipecac or lavage for patients presenting 2 hours post-ingestion. Charcoal does not absorb well; the usefulness of cathartic is not established.
- Forced diuresis is not effective; haemodialysis is recommended where peak methanol levels exceed 50 mg/dL (this correlates with serum bicarbonate levels below 18 mEg/L).
- Ethanol, maintained at levels between 100 and 150 mg/dL, inhibits formation of toxic metabolites and may be indicated when peak methanol levels exceed 20 mg/dL, An intravenous solution of ethanol in D5W is optimal.
- · Folate, as leucovorin, may increase the oxidative removal of formic acid. 4-methylpyrazole may be an effective adjunct in the treatment. 8. Phenytoin may be preferable to diazepam for controlling seizure

[Ellenhorn Barceloux: Medical Toxicology]

Methanol poisoning can be treated with fomepizole, or if unavailable, ethanol. Both drugs act to reduce the action of alcohol dehydrogenase on methanol by means of competitive inhibition. Ethanol, the active ingredient in alcoholic beverages, acts as a competitive inhibitor by more effectively binding and saturating the alcohol dehydrogenase enzyme in the liver, thus blocking the binding of methanol. Methanol is excreted by the kidneys without being converted into the very toxic metabolites formaldehyde and formic acid. Alcohol dehydrogenase instead enzymatically converts ethanol to acetaldehyde, a much less toxic organic molecule. Additional treatment may include sodium bicarbonate for metabolic acidosis, and hemodialysis or hemodiafiltration to remove methanol and formate from the blood. Folinic acid or folic acid is also administered to enhance the metabolism of formate. **BIOLOGICAL EXPOSURE INDEX - BEI**

Determinant Sampling Time Index Comment 1. Methanol in urine End of shift B, NS 15 mg/l 2. Formic acid in urine 80 mg/gm creatinine Before the shift at end of workweek B. NS

B: Background levels occur in specimens collected from subjects NOT exposed. NS: Non-specific determinant - observed following exposure to other materials.

SECTION 5 Firefighting measures

Extinguishing media

- Alcohol stable foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

DO NOT EXTINGUISH BURNING GAS UNLESS LEAK CAN BE STOPPED SAFELY:

OTHERWISE: LEAVE GAS TO BURN.

FOR SMALL FIRE:

- Dry chemical, CO2 or water spray to extinguish gas (only if absolutely necessary and safe to do so).
- DO NOT use water jets

FOR LARGE FIRE:

- Cool cylinder by direct flooding quantities of water onto upper surface until well after fire is out.
- ▶ DO NOT direct water at source of leak or venting safety devices as icing may occur.

Special hazards arising from the substrate or mixture

Fire Incompatibility

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

FOR FIRES INVOLVING MANY GAS CYLINDERS:

- To stop the flow of gas, specifically trained personnel may inert the atmosphere to reduce oxygen levels thus allowing the capping of leaking container(s).
- Reduce the rate of flow and inject an inert gas, if possible, before completely stopping the flow to prevent flashback.
- DO NOT extinguish the fire until the supply is shut off otherwise an explosive re-ignition may occur.
- If the fire is extinguished and the flow of gas continues, used increased ventilation to prevent build-up, of explosive atmosphere.
- - Use non-sparking tools to close container valves.
 - Be CAUTIOUS of a Boiling Liquid Evaporating Vapour Explosion, BLEVE, if fire is impinging on surrounding containers.
 - Direct 2500 litre/min (500 gpm) water stream onto containers above liquid level with the assistance remote monitors.

GENERAL

Alert Fire Brigade and tell them location and nature of hazard.

Continued...

Fire Fighting

Version No: 3.3 Issue Date: 12/07/2022 Page 5 of 18

TensorGrip L20 Canister Spray Adhesive

Print Date: 12/07/2022

- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Consider evacuation
- Fight fire from a safe distance, with adequate cover.
- If safe, switch off electrical equipment until vapour fire hazard removed.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach cylinders suspected to be hot.
- ▶ Cool fire-exposed cylinders with water spray from a protected location.
- If safe to do so, remove containers from path of fire

FIRE FIGHTING PROCEDURES:

- ▶ The only safe way to extinguish a flammable gas fire is to stop the flow of gas.
- If the flow cannot be stopped, allow the entire contents of the cylinder to burn while cooling the cylinder and surroundings with water from a suitable distance.
- Extinguishing the fire without stopping the gas flow may permit the formation of ignitable or explosive mixtures with air. These mixtures may propagate to a source of ignition.

SPECIAL HAZARDS

- Excessive pressures may develop in a gas cylinder exposed in a fire; this may result in explosion.
- Cylinders with pressure relief devices may release their contents as a result of fire and the released gas may constitute a further source of hazard for the fire-fighter.
- Cylinders without pressure-relief valves have no provision for controlled release and are therefore more likely to explode if exposed to fire.

FIRE FIGHTING REQUIREMENTS:

The need for proximity, entry and flash-over protection and special protective clothing should be determined for each incident, by a competent fire-fighting safety professional.

► HIGHLY FLAMMABLE: will be easily ignited by heat, sparks or flames.

- ▶ Will form explosive mixtures with air
- Fire exposed containers may vent contents through pressure relief valves thereby increasing fire intensity and/ or vapour concentration.
- Vapours may travel to source of ignition and flash back.
- Containers may explode when heated Ruptured cylinders may rocket
- Fire may produce irritating, poisonous or corrosive gases.
- Runoff may create fire or explosion hazard.
- May decompose explosively when heated or involved in fire.
- High concentration of gas may cause asphyxiation without warning.
- Contact with gas may cause burns, severe injury and/ or frostbite.

Combustion products include:

carbon monoxide (CO)

carbon dioxide (CO2)

other pyrolysis products typical of burning organic material.

Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.

Vented gas is more dense than air and may collect in pits, basements

HAZCHEM

2YE

SECTION 6 Accidental release measures

Fire/Explosion Hazard

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

- Avoid breathing vapour and any contact with liquid or gas. Protective equipment including respirator should be used.
- ▶ DO NOT enter confined spaces where gas may have accumulated.
- Shut off all sources of possible ignition and increase ventilation.

Minor Spills

- Clear area of personnel. Stop leak only if safe to so do.
- Figure 1 Remove leaking cylinders to safe place, release pressure under safe controlled conditions by opening valve.
- Orientate cylinder so that the leak is gas, not liquid, to minimise rate of leakage
- Keep area clear of personnel until gas has dispersed.

▶ Clear area of all unprotected personnel and move upwind.

- Alert Emergency Authority and advise them of the location and nature of hazard.
- May be violently or explosively reactive.
- Wear full body clothing with breathing apparatus.
- Prevent by any means available, spillage from entering drains and water-courses.
- Consider evacuation.
- Shut off all possible sources of ignition and increase ventilation.

Major Spills

- No smoking or naked lights within area.

 - Use extreme caution to prevent violent reaction.
 - Stop leak only if safe to so do. ▶ Water spray or fog may be used to disperse vapour.
- DO NOT enter confined space where gas may have collected.
- ▶ Keep area clear until gas has dispersed.
- Remove leaking cylinders to a safe place.
- Fit vent pipes. Release pressure under safe, controlled conditions

Version No: 3.3 Page 6 of 18 Issue Date: 12/07/2022

TensorGrip L20 Canister Spray Adhesive

Print Date: 12/07/2022

- Burn issuing gas at vent pipes.
- ▶ DO NOT exert excessive pressure on valve; DO NOT attempt to operate damaged valve.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Safe handling

Precautions for safe handling

The conductivity of this material may make it a static accumulator., A liquid is typically considered nonconductive if its conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10 000 pS/m., Whether a liquid is nonconductive or semi-conductive, the precautions are the same., A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid.

Radon and its radioactive decay products are hazardous if inhaled or ingested

- Containers, even those that have been emptied, may contain explosive vapours.
- Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- Electrostatic discharge may be generated during pumping this may result in fire.
- ► Ensure electrical continuity by bonding and grounding (earthing) all equipment.
- Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec).
- Avoid splash filling.
- Do NOT use compressed air for filling discharging or handling operations.
- Consider use in closed pressurised systems, fitted with temperature, pressure and safety relief valves which are vented for safe dispersal. Use only properly specified equipment which is suitable for this product, its supply pressure and temperature
- The tubing network design connecting gas cylinders to the delivery system should include appropriate pressure indicators and vacuum or suction lines.
- Fully-welded types of pressure gauges, where the bourdon tube sensing element is welded to the gauge body, are recommended.
- Before connecting gas cylinders, ensure manifold is mechanically secure and does not containing another gas. Before disconnecting gas cylinder, isolate supply line segment proximal to cylinder, remove trapped gas in supply line with aid of vacuum pump
- When connecting or replacing cylinders take care to avoid airborne particulates violently ejected when system pressurises.
- Consider the use of doubly-contained piping; diaphragm or bellows sealed, soft seat valves; backflow prevention devices; flash arrestors; and flow monitoring or limiting devices. Gas cabinets, with appropriate exhaust treatment, are recommended, as is automatic monitoring of the secondary enclosures and work areas for release.
- Use a pressure reducing regulator when connecting cylinder to lower pressure (<100 psig) piping or systems
- Use a check valve or trap in the discharge line to prevent hazardous back-flow into the cylinder
- Check regularly for spills or leaks. Keep valves tightly closed but do not apply extra leverage to hand wheels or cylinder keys.
- Open valve slowly. If valve is resistant to opening then contact your supervisor
- Valve protection caps must remain in place must remain in place unless container is secured with valve outlet piped to use point.
- Never insert a pointed object (e.g hooks) into cylinder cap openings as a means to open cap or move cylinder. Such action can

inadvertently turn the valve and gas a gas leak. Use an adjustable strap instead of wrench to free an over-tight or rusted cap.

- A bubble of gas may buildup behind the outlet dust cap during transportation, after prolonged storage, due to defective cylinder valve or if a dust cap is inserted without adequate evacuation of gas from the line. When loosening dust cap, preferably stand cylinder in a suitable enclosure and take cap off slowly. Never face the dust cap directly when removing it; point cap away from any personnel or any object that may pose a hazard. under negative pressure (relative to atmospheric gas)
- Suck back of water into the container must be prevented. Do not allow backfeed into the container.
- Do NOT drag, slide or roll cylinders use a suitable hand truck for cylinder movement
- Test for leakage with brush and detergent NEVER use a naked fla
- Do NOT heat cylinder by any means to increase the discharge rate of product from cylinder.
- Leaking gland nuts may be tightened if necessary.
- If a cylinder valve will not close completely, remove the cylinder to a well ventilated location (e.g. outside) and, when empty, tag as FAULTY and return to supplier.
- Obtain a work permit before attempting any repairs.
- DO NOT attempt repair work on lines, vessels under pressure.
- Atmospheres must be tested and O.K. before work resumes after leakage.
- Avoid generation of static electricity. Earth all lines and equipment.
- ▶ DO NOT transfer gas from one cylinder to another
- Cylinders should be stored in a purpose-built compound with good ventilation, preferably in the open.
- Such compounds should be sited and built in accordance with statutory requirements.
- The storage compound should be kept clear and access restricted to authorised personnel only.
- Cylinders stored in the open should be protected against rust and extremes of weather. Cylinders in storage should be properly secured to prevent toppling or rolling.
- Cylinder valves should be closed when not in use.
- Where cylinders are fitted with valve protection this should be in place and properly secured.
- Gas cylinders should be segregated according to the requirements of the Dangerous Goods Act(s).
- Cylinders containing flammable gases should be stored away from other combustible materials. Alternatively a fire-resistant partition may be
- ▶ Check storage areas for flammable or hazardous concentrations of gases prior to entry.
- Preferably store full and empty cylinders separately.
- Full cylinders should be arranged so that the oldest stock is used first.
- Cylinders in storage should be checked periodically for general condition and leakage.
- Protect cylinders against physical damage. Move and store cylinders correctly as instructed for their manual handling.

NOTE: A 'G' size cylinder is usually too heavy for an inexperienced operator to raise or lower.

Conditions for safe storage, including any incompatibilities

- Cvlinder:
- Ensure the use of equipment rated for cylinder pressure.
- Ensure the use of compatible materials of construction.
- Valve protection cap to be in place until cylinder is secured, connected.
- Cylinder must be properly secured either in use or in storage Cylinder valve must be closed when not in use or when empty.
 - Segregate full from empty cylinders.

WARNING: Suckback into cylinder may result in rupture. Use back-flow preventive device in piping.

Other information

Version No: **3.3** Page **7** of **18** Issue Date: **12/07/2022**

TensorGrip L20 Canister Spray Adhesive

Print Date: 12/07/2022

Methyl acetate:

- reacts violently with oxidisers
- decomposes on contact with acid or bases forming methanol
- is incompatible with nitrates
- attacks some plastics
- ► may generate electrostatic charges

Low molecular weight alkanes:

- May react violently with strong oxidisers, chlorine, chlorine dioxide, dioxygenyl tetrafluoroborate.
- May react with oxidising materials, nickel carbonyl in the presence of oxygen, heat.
- Are incompatible with nitronium tetrafluoroborate(1-), halogens and interhalogens
- ▶ may generate electrostatic charges, due to low conductivity, on flow or agitation.
- ▶ Avoid flame and ignition sources

Redox reactions of alkanes, in particular with oxygen and the halogens, are possible as the carbon atoms are in a strongly reduced condition. Reaction with oxygen (if present in sufficient quantity to satisfy the reaction stoichiometry) leads to combustion without any smoke, producing carbon dioxide and water. Free radical halogenation reactions occur with halogens, leading to the production of haloalkanes. In addition, alkanes have been shown to interact with, and bind to, certain transition metal complexes

Interaction between chlorine and ethane over activated carbon at 350 deg C has caused explosions, but added carbon dioxide reduces the risk. The violent interaction of liquid chlorine injected into ethane at 80 deg C/10 bar becomes very violent if ethylene is also present A mixture prepared at -196 deg C with either methane or ethane exploded when the temp was raised to -78 deg C. Addition of nickel carbonyl to an n-butane-oxygen mixture causes an explosion at 20-40 deg C.

Alkanes will react with steam in the presence of a nickel catalyst to give hydrogen.

- Esters react with acids to liberate heat along with alcohols and acids
- Strong oxidising acids may cause a vigorous reaction with esters that is sufficiently exothermic to ignite the reaction products.
- Heat is also generated by the interaction of esters with caustic solutions.
- Flammable hydrogen is generated by mixing esters with alkali metals and hydrides.
- Esters may be incompatible with aliphatic amines and nitrates.

Propane:

- reacts violently with strong oxidisers, barium peroxide, chlorine dioxide, dichlorine oxide, fluorine etc.
- I liquid attacks some plastics, rubber and coatings
- ▶ may accumulate static charges which may ignite its vapours
- Compressed gases may contain a large amount of kinetic energy over and above that potentially available from the energy of reaction produced by the gas in chemical reaction with other substances

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

Storage incompatibility

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	methyl acetate	Methyl acetate	200 ppm / 606 mg/m3	757 mg/m3 / 250 ppm	Not Available	Not Available
Australia Exposure Standards	LPG (liquefied petroleum gas)	LPG (liquified petroleum gas)	1000 ppm / 1800 mg/m3	Not Available	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
hydrocarbons, C7-9, n-alkanes, isoalkanes, cyclics	1,000 mg/m3	11,000 mg/m3	66,000 mg/m3
methyl acetate	250 ppm	1,700 ppm	10000* ppm
LPG (liquefied petroleum gas)	65,000 ppm	2.30E+05 ppm	4.00E+05 ppm

Ingredient	Original IDLH	Revised IDLH
hydrocarbons, C7-9, n-alkanes, isoalkanes, cyclics	Not Available	Not Available
methyl acetate	3,100 ppm	Not Available
LPG (liquefied petroleum gas)	2,000 ppm	Not Available

Occupational Exposure Banding

Appropriate engineering

controls

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
hydrocarbons, C7-9, n-alkanes, isoalkanes, cyclics	С	> 1 to ≤ 10 parts per million (ppm)
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.	

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

- Employees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area.
- Work should be undertaken in an isolated system such as a "glove-box". Employees should wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system.

Version No: **3.3** Page **8** of **18** Issue Date: **12/07/2022**

TensorGrip L20 Canister Spray Adhesive

Print Date: 12/07/2022

- Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including piping systems, with any sample ports or openings closed while the carcinogens are contained within.
- Open-vessel systems are prohibited.
- Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the operation.
- Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless decontaminated. Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local exhaust system.
- For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
- Except for outdoor systems, regulated areas should be maintained under negative pressure (with respect to non-regulated areas).
- Local exhaust ventilation requires make-up air be supplied in equal volumes to replaced air.
- Laboratory hoods must be designed and maintained so as to draw air inward at an average linear face velocity of 0.76 m/sec with a minimum of 0.64 m/sec. Design and construction of the fume hood requires that insertion of any portion of the employees body, other than hands and arms, be disallowed.

Personal protection

Eye and face protection

Chemical goggles.

Full face shield may be required for supplementary but never for primary protection of eyes.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

Hands/feet protection

For esters

- ▶ Do NOT use natural rubber, butyl rubber, EPDM or polystyrene-containing materials.
- When handling sealed and suitably insulated cylinders wear cloth or leather gloves.
- Insulated gloves:

NOTE: Insulated gloves should be loose fitting so that may be removed quickly if liquid is spilled upon them. Insulated gloves are not made to permit hands to be placed in the liquid; they provide only short-term protection from accidental contact with the liquid.

Body protection

See Other protection below

- Employees working with confirmed human carcinogens should be provided with, and be required to wear, clean, full body protective clothing (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the regulated area. [AS/NZS ISO 6529:2006 or national equivalent]
- Employees engaged in handling operations involving carcinogens should be provided with, and required to wear and use half-face filter-type respirators with filters for dusts, mists and fumes, or air purifying canisters or cartridges. A respirator affording higher levels of protection may be substituted. [AS/NZS 1715 or national equivalent]
- Emergency deluge showers and eyewash fountains, supplied with potable water, should be located near, within sight of, and on the same level with locations where direct exposure is likely.
- Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers at the point of exit for purposes of decontamination or disposal. The contents of such impervious containers must be identified with suitable labels. For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood.
- Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
- The clothing worn by process operators insulated from earth may develop static charges far higher (up to 100 times) than the minimum ignition energies for various flammable gas-air mixtures. This holds true for a wide range of clothing materials including cotton.
- Avoid dangerous levels of charge by ensuring a low resistivity of the surface material worn outermost.

Other protection

BRETHERICK: Handbook of Reactive Chemical Hazards.

- ▶ Protective overalls, closely fitted at neck and wrist.
- ► Eye-wash unit.

IN CONFINED SPACES:

- Non-sparking protective boots
- Static-free clothing.
- Ensure availability of lifeline.

Staff should be trained in all aspects of rescue work.

Rescue gear: Two sets of SCBA breathing apparatus Rescue Harness, lines etc.

- Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
- ▶ For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).
- Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

TensorGrip L20 Canister Spray Adhesive

Material	СРІ
BUTYL	A

Respiratory protection

Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum	Half-Face	Full-Face	Powered Air
Protection Factor	Respirator	Respirator	Respirator

Version No: 3.3 Issue Date: 12/07/2022 Page 9 of 18 Print Date: 12/07/2022

TensorGrip L20 Canister Spray Adhesive

PE/EVAL/PE	Α
PVA	С

^{*} CPI - Chemwatch Performance Index

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

up to 5 x ES	AX-AUS / Class 1	-	AX-PAPR-AUS / Class 1
up to 25 x ES	Air-line*	AX-2	AX-PAPR-2
up to 50 x ES	-	AX-3	-
50+ x ES	-	Air-line**	-

^{* -} Continuous-flow; ** - Continuous-flow or positive pressure demand

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or $hydrogen\ cyanide(HCN),\ B3=Acid\ gas\ or\ hydrogen\ cyanide(HCN),\ E=Sulfur$ dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- ▶ Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- ▶ The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used
- Positive pressure, full face, air-supplied breathing apparatus should be used for work in enclosed spaces if a leak is suspected or the primary containment is to be opened (e.g. for a cylinder change)
- Air-supplied breathing apparatus is required where release of gas from primary containment is either suspected or demonstrated.

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Required minimum protection factor	Maximum gas/vapour concentration present in air p.p.m. (by volume)	Half-face Respirator	Full-Face Respirator
up to 10	1000	AX-AUS / Class 1	-
up to 50	1000	-	AX-AUS / Class 1
up to 50	5000	Airline *	-
up to 100	5000	-	AX-2
up to 100	10000	-	AX-3
100+		-	Airline**

^{** -} Continuous-flow or positive pressure demand.

A(All classes) = Organic vapours, B AUS or B1 = Acid gases, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 deg C)

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties Not Available **Appearance** Physical state Liquified Gas Relative density (Water = 1) 0.741 Partition coefficient n-octanol Not Available Not Available Odour Odour threshold Not Available Not Available Auto-ignition temperature (°C) Decomposition pH (as supplied) Not Available Not Available temperature (°C) Melting point / freezing point -97 Viscosity (cSt) Not Available Initial boiling point and boiling 40 Molecular weight (g/mol) Not Available range (°C) Flash point (°C) -104 Not Available **Taste Evaporation rate** Not Available **Explosive properties** Not Available Flammability HIGHLY FLAMMABLE Not Available Oxidising properties Surface Tension (dyn/cm or Upper Explosive Limit (%) Not Available Not Available mN/m) Lower Explosive Limit (%) Not Available Volatile Component (%vol) Not Available Vapour pressure (kPa) 46.86 Gas group Not Available

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

Version No: 3.3 Page 10 of 18 Issue Date: 12/07/2022 Print Date: 12/07/2022

TensorGrip L20 Canister Spray Adhesive

Solubility in water	Immiscible	pH as a solution (Not Available%)	Not Available
Vapour density (Air = 1)	2.93	VOC g/L	577.02

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. Presence of heat source Presence of an ignition source
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Ingestion

Eve

Information on toxicological effects

The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo.

The main effects of simple esters are irritation, stupor and insensibility. Headache, drowsiness, dizziness, coma and behavioural changes may occur.

Exposure to methyl acetate fumes may lead to shortness of breath and an irregular heartbeat. Inhalation of methyl acetate causes severe

headache and sleepiness.

Nerve damage can be caused by some non-ring hydrocarbons. Symptoms are temporary, and include weakness, tremors, increased saliva, some convulsions, excessive tears with discolouration and inco-ordination lasting up to 24 hours.

Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and Inhaled dizziness, slowing of reflexes, fatigue and inco-ordination.

Material is highly volatile and may guickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure.

Symptoms of asphyxia (suffocation) may include headache, dizziness, shortness of breath, muscular weakness, drowsiness and ringing in the ears. If the asphyxia is allowed to progress, there may be nausea and vomiting, further physical weakness and unconsciousness and, finally, convulsions, coma and death.

The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Before starting consider control of exposure by mechanical ventilation.

Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health

Methanol may produce a burning or painful sensation in the mouth, throat, chest, and stomach. This may be accompanied by nausea, vomiting, headache, dizziness, shortness of breath, weakness, fatigue, leg cramps, restlessness, confusion, drunken behaviour, visual disturbance,

drowsiness, coma and death.

Not normally a hazard due to physical form of product. Considered an unlikely route of entry in commercial/industrial environments

Swallowing large doses of methyl acetate may result in severe cramping, intoxication and depression of the central nervous system. Isoparaffinic hydrocarbons cause temporary lethargy, weakness, inco-ordination and diarrhoea.

Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733)

Considered an unlikely route of entry in commercial/industrial environments. The liquid may produce gastrointestinal discomfort and may be harmful if swallowed.

Accidental ingestion of the material may be damaging to the health of the individual.

The material may accentuate any pre-existing dermatitis condition

Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions.

Skin exposure to isoparaffins may produce slight to moderate irritation in animals and humans. Rare sensitisation reactions in humans have occurred.

Methyl acetate has proven to cause only weak skin irritation in humans and in rabbits (no oedema, erythema with maximum grade 1 reversible

Open cuts, abraded or irritated skin should not be exposed to this material Skin Contact

Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Vapourising liquid causes rapid cooling and contact may cause cold burns, frostbite, even through normal gloves. Frozen skin tissues are painless and appear waxy and yellow. Signs and symptoms of frost-bite may include "pins and needles", paleness followed by numbness, a hardening an stiffening of the skin, a progression of colour changes in the affected area, (first white, then mottled and blue and eventually black; on recovery, red, hot, painful and blistered).

There is some evidence to suggest that the material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blistering.

Instillation of isoparaffins into rabbit eves produces only slight irritation.

Overexposure to methyl acetate vapour may result in a condition known as amylopia (dimming of vision) due to withering of the optic nerve. Methyl acetate may resemble methanol in this respect. Animal testing showed that methyl acetate causes severe eye irritation, but this is reversible after exposure ends.

Not considered to be a risk because of the extreme volatility of the gas.

This material may produce eye irritation in some persons and produce eye damage 24 hours or more after instillation. Moderate inflammation may be expected with redness; conjunctivitis may occur with prolonged exposure.

Continued...

Version No: **3.3** Page **11** of **18** Issue Date: **12/07/2022**

TensorGrip L20 Canister Spray Adhesive

Print Date: 12/07/2022

Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems.

There is sufficient evidence to suggest that this material directly causes cancer in humans.

There is ample evidence to presume that exposure to this material can cause genetic defects that can be inherited.

Based on experiments and other information, there is ample evidence to presume that exposure to this material can cause genetic defects that can be inherited.

Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed.

This material can cause serious damage if one is exposed to it for long periods. It can be assumed that it contains a substance which can produce severe defects.

Chronic

Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. Constant or exposure over long periods to mixed hydrocarbons may produce stupor with dizziness, weakness and visual disturbance, weight loss and anaemia, and reduced liver and kidney function. Skin exposure may result in drying and cracking and redness of the skin.

Main route of exposure to the gas in the workplace is by inhalation.

Chronic effects of exposure to methyl acetate may be similar to those of methanol exposure, because methyl acetate can break down in water to form methanol and acetic acid. The main hazard is damage to the optic nerve.

Long-term exposure to methanol vapour, at concentrations exceeding 3000 ppm, may produce cumulative effects characterised by gastrointestinal disturbances (nausea, vomiting), headache, ringing in the ears, insomnia, trembling, unsteady gait, vertigo, conjunctivitis and clouded or double vision. Liver and/or kidney injury may also result.

Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following.

TensorGrip L20 Canister	TOXICITY	IRRITATION	
Spray Adhesive	Not Available	Not Available	
	TOXICITY	IRRITATION	
hydrocarbons, C7-9, n-alkanes, isoalkanes, cyclics	dermal (rat) LD50: >2920 mg/kg ^[2]	Eye : Not irritating *	
	Inhalation(Rat) LC50; >23.3 mg/L4h ^[2]	Eye: no adverse effect observed (not irritating) ^[1]	
	Oral (Rat) LD50; >5840 mg/kg ^[2]	Skin : Not irritating *	
		Skin: adverse effect observed (irritating) ^[1]	
	TOXICITY	IRRITATION	
	dermal (rat) LD50: >2000 mg/kg ^[2]	Eye (rabbit):100 mg/24h-moderate	
methyl acetate	Oral (Rabbit) LD50; 3700 mg/kg ^[2]	Skin (rabbit): 20 mg/24h - mild	
		Skin (rabbit): 500 mg/24h - mild	
	TOXICITY	IRRITATION	
LPG (liquefied petroleum gas)	Inhalation(Rat) LC50; 658 mg/l4h ^[2]	Not Available	
Legend:	Nalue obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwis specified data extracted from RTECS - Register of Toxic Effect of chemical Substances		

TensorGrip L20 Canister Spray Adhesive

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

Generally, linear and branched-chain alkyl esters are hydrolysed to their component alcohols and carboxylic acids in the intestinal tract, blood and most tissues throughout the body. Following hydrolysis the component alcohols and carboxylic acids are metabolized

Oral acute toxicity studies have been reported for 51 of the 67 esters of aliphatic acyclic primary alcohols and aliphatic linear saturated carboxylic acids. The very low oral acute toxicity of this group of esters is demonstrated by oral LD50 values greater than 1850 mg/kg bw

Genotoxicity studies have been performed in vitro using the following esters of aliphatic acyclic primary alcohols and aliphatic linear saturated carboxylic acids: methyl acetate, butyl acetate, butyl stearate and the structurally related isoamyl formate and demonstrates that these substances are not genotoxic.

The JEFCA Committee concluded that the substances in this group would not present safety concerns at the current levels of intake the esters of aliphatic acyclic primary alcohols and aliphatic linear saturated carboxylic acids are generally used as flavouring substances up to average maximum levels of 200 mg/kg. Higher levels of use (up to 3000 mg/kg) are permitted in food categories such as chewing gum and hard candy. In Europe the upper use levels for these flavouring substances are generally 1 to 30 mg/kg foods and in special food categories like candy and alcoholic beverages up to 300 mg/kg foods

InternationI Program on Chemical Safety: the Joint FAO/WHO Expert Committee on Food Additives (JECFA) Esters of Aliphatic acyclic primary alcohols with aliphatic linear saturated carboxylic acids.; 1998

HYDROCARBONS, C7-9, N-ALKANES, ISOALKANES, CYCLICS

Based on read-across from a structurally related substance (light alkylate naphtha distillate), no inhalation repeated dose toxicity is expected from the exposure to hydrocarbons, C7-C9, n-alkanes, isoalkanes, cyclics. The NOAEC for systemic toxicity was 8117 mg/m³ corresponding to 2200 ppm. The available data on the genotoxic potential of hydrocarbons, C7 -C9, n-alkanes, isoalkanes, cyclics and structurally related substances within a category approach are conclusive but not sufficient for classification.. The available data and available weight of evidence demonstrate that the substances in this category are highly unlikely to be carcinogenic and are not classifiable as carcinogens The weight of evidence based on a category approach indicates that hydrocarbons, C7, n-alkanes, isoalkanes, cyclics are unlikely to present a hazard as neurotoxicant. * REACh Dossier

For Low Boiling Point Naphthas (LBPNs):

Acute toxicity:

LBPNs generally have low acute toxicity by the oral (median lethal dose [LD50] in rats > 2000 mg/kg-bw), inhalation (LD50 in rats > 5000 mg/m3) and dermal (LD50 in rabbits > 2000 mg/kg-bw) routes of exposure

Most LBPNs are mild to moderate eye and skin irritants in rabbits, with the exception of heavy catalytic cracked and heavy catalytic reformed naphthas, which have higher primary skin irritation indices.

Sensitisation:

LBPNs do not appear to be skin sensitizers, but a poor response in the positive control was also noted in these studies **Repeat dose toxicity**:

Version No: **3.3** Page **12** of **18** Issue Date: **12/07/2022**

TensorGrip L20 Canister Spray Adhesive

Print Date: 12/07/2022

The lowest-observed-adverse-effect concentration (LOAEC) and lowest-observed-adverse-effect level (LOAEL) values identified following short-term (2-89 days) and subchronic (greater than 90 days) exposure to the LBPN substances. These values were determined for a variety of endpoints after considering the toxicity data for all LBPNs in the group. Most of the studies were carried out by the inhalation route of exposure. Renal effects, including increased kidney weight, renal lesions (renal tubule dilation, necrosis) and hyaline droplet formation, observed in male rats exposed orally or by inhalation to most LBPNs, were considered species- and sex-specific These effects were determined to be due to a mechanism of action not relevant to humans -specifically, the interaction between hydrocarbon metabolites and alpha-2-microglobulin, an enzyme not produced in substantial amounts in female rats, mice and other species, including humans. The resulting nephrotoxicity and subsequent carcinogenesis in male rats were therefore not considered in deriving LOAEC/LOAEL values.

Only a limited number of studies of short-term and subchronic duration were identified for site-restricted LBPNs. The lowest LOAEC identified in these studies, via the inhalation route, is 5475 mg/m3, based on a concentration-related increase in liver weight in both male and female rats following a 13-week exposure to light catalytic cracked naphtha. Shorter exposures of rats to this test substance resulted in nasal irritation at 9041 mg/m3

No systemic toxicity was reported following dermal exposure to light catalytic cracked naphtha, but skin irritation and accompanying histopathological changes were increased, in a dose-dependent manner, at doses as low as 30 mg/kg-bw per day when applied 5 days per week for 90 days in rats

No non-cancer chronic toxicity studies (= 1 year) were identified for site-restricted LBPNs and very few non-cancer chronic toxicity studies were identified for other LBPNs. An LOAEC of 200 mg/m3 was noted in a chronic inhalation study that exposed mice and rats to unleaded gasoline (containing 2% benzene). This inhalation LOAEC was based on ocular discharge and ocular irritation in rats. At the higher concentration of 6170 mg/m3, increased kidney weight was observed in male and female rats (increased kidney weight was also observed in males only at 870 mg/m3). Furthermore, decreased body weight in male and female mice was also observed at 6170 mg/m3

A LOAEL of 714 mg/kg-bw was identified for dermal exposure based on local skin effects (inflammatory and degenerative skin changes) in mice following application of naphtha for 105 weeks. No systemic toxicity was reported.

Genotoxicity:

Although few genotoxicity studies were identified for the site-restricted LBPNs, the genotoxicity of several other LBPN substances has been evaluated using a variety of in vivo and in vitro assays. While in vivo genotoxicity assays were negative overall, the in vitro tests exhibited mixed results.

For in vivo genotoxicity tests, LBPNs exhibited negative results for chromosomal aberrations and micronuclei induction, but exhibited positive results in one sister chromatid exchange assay although this result was not considered definitive for clastogenic activity as no genetic material was unbalanced or lost. Mixtures that were tested, which included a number of light naphthas, displayed mixed results (i.e., both positive and negative for the same assay) for chromosomal aberrations and negative results for the dominant lethal mutation assay. Unleaded gasoline (containing 2% benzene) was tested for its ability to induce unscheduled deoxyribonucleic acid (DNA) synthesis (UDS) and replicative DNA synthesis (RDS) in rodent hepatocytes and kidney cells. UDS and RDS were induced in mouse hepatocytes via oral exposure and RDS was induced in rat kidney cells via oral and inhalation exposure. Unleaded gasoline (benzene content not stated) exhibited negative results for chromosomal aberrations and the dominant lethal mutation assay and mixed results for atypical cell foci in rodent renal and hepatic cells. For in vitro genotoxicity studies, LBPNs were negative for six out of seven Ames tests, and were also negative for UDS and for forward mutations LBPNs exhibited mixed or equivocal results for the mouse lymphoma and sister chromatid exchange assays, as well as for cell transformation and positive results for one bacterial DNA repair assay. Mixtures that were tested, which included a number of light naphthas, displayed negative results for the Ames and mouse lymphoma assays Gasoline exhibited negative results for the Ames test battery, the sister chromatid exchange assay and for one mutagenicity assay. Mixed results were observed for UDS and the mouse lymphoma assay.

While the majority of in vivo genotoxicity results for LBPN substances are negative, the potential for genotoxicity of LBPNs as a group cannot be discounted based on the mixed in vitro genotoxicity results.

Carcinogenicity

Although a number of epidemiological studies have reported increases in the incidence of a variety of cancers, the majority of these studies are considered to contain incomplete or inadequate information. Limited data, however, are available for skin cancer and leukemia incidence, as well as mortality among petroleum refinery workers. It was concluded that there is limited evidence supporting the view that working in petroleum refineries entails a carcinogenic risk (Group 2A carcinogen). IARC (1989a) also classified gasoline as a Group 2B carcinogen; it considered the evidence for carcinogenicity in humans from gasoline to be inadequate and noted that published epidemiological studies had several limitations, including a lack of exposure data and the fact that it was not possible to separate the effects of combustion products from those of gasoline itself. Similar conclusions were drawn from other reviews of epidemiological studies for gasoline (US EPA 1987a, 1987b). Thus, the evidence gathered from these epidemiological studies is considered to be inadequate to conclude on the effect s of human exposure to LBPN substances.

No inhalation studies assessing the carcinogenicity of the site-restricted LBPNs were identified. Only unleaded gasoline has been examined for its carcinogenic potential, in several inhalation studies. In one study, rats and mice were exposed to 0, 200, 870 or 6170 mg/m3 of a 2% benzene formulation of the test substance, via inhalation, for approximately 2 years. A statistically significant increase in hepatocellular adenomas and carcinomas, as well as a non-statistical increase in renal tumours, were observed at the highest dose in female mice. A dose-dependent increase in the incidence of primary renal neoplasms was also detected in male rats, but this was not considered to be relevant to humans, as discussed previously. Carcinogenicity was also assessed for unleaded gasoline, via inhalation, as part of initiation/promotion studies. In these studies, unleaded gasoline did not appear to initiate tumour formation, but did show renal cell and hepatic tumour promotion ability, when rats and mice were exposed, via inhalation, for durations ranging from 13 weeks to approximately 1 year using an initiation/promotion protocol However, further examination of data relevant to the composition of unleaded gasoline demonstrated that this is a highly-regulated substance; it is expected to contain a lower percentage of benzene and has a discrete component profile when compared to other substances in the LBPN group.

Both the European Commission and the International Agency for Research on Cancer (IARC) have classified LBPN substances as carcinogenic. All of these substances were classified by the European Commission (2008) as Category 2 (R45: may cause cancer) (benzene content = 0.1% by weight). IARC has classified gasoline, an LBPN, as a Group 2B carcinogen (possibly carcinogenic to humans) and "occupational exposures in petroleum refining" as Group 2A carcinogens (probably carcinogenic to humans).

Several studies were conducted on experimental animals to investigate the dermal carcinogenicity of LBPNs. The majority of these studies were conducted through exposure of mice to doses ranging from 694-1351 mg/kg-bw, for durations ranging from 1 year to the animals lifetime or until a tumour persisted for 2 weeks. Given the route of exposure, the studies specifically examined the formation of skin tumours. Results for carcinogenicity via dermal exposure are mixed. Both malignant and benign skin tumours were induced with heavy catalytic cracked naphtha, light catalytic cracked naphtha, light

straight-run naphtha and naphtha Significant increases in squamous cell carcinomas were also observed when mice were dermally treated with Stoddard solvent, but the latter was administered as a mixture (90% test substance), and the details of the study were not available. In contrast, insignificant increases in tumour formation or no tumours were observed when light alkylate naphtha, heavy catalytic reformed naphtha, sweetened naphtha, light catalytically cracked naphtha

or unleaded gasoline was dermally applied to mice. Negative results for skin tumours were also observed in male mice dermally exposed to sweetened naphtha using an initiation/promotion protocol.

Reproductive/ Developmental toxicity

No reproductive or developmental toxicity was observed for the majority of LBPN substances evaluated. Most of these studies were carried out by inhalation exposure in rodents.

NOAEC values for reproductive toxicity following inhalation exposure ranged from 1701 mg/m3 (CAS RN 8052-41-3) to 27 687 mg/m3 (CAS RN 64741-63-5) for the LBPNs group evaluated, and from 7690 mg/m3 to 27 059 mg/m3 for the site-restricted light catalytic cracked and full-range catalytic reformed naphthas. However, a decreased number of pups per litter and higher frequency of post-implantation loss were observed following inhalation exposure of female rats to hydrotreated heavy naphtha (CAS RN 64742-48-9) at a concentration of 4679 mg/m3, 6 hours per day, from gestational days 7-20. For dermal exposures, NOAEL values of 714 mg/kg-bw (CAS RN 8030-30-6) and 1000 mg/kg-bw per day (CAS RN 68513-02-0) were noted. For oral exposures, no adverse effects on reproductive parameters were reported when rats were given site-restricted light catalytic cracked naphtha at 2000 mg/kg on gestational day 13.

For most LBPNs, no treatment-related developmental effects were observed by the different routes of exposure However, developmental toxicity was observed for a few naphthas. Decreased foetal body weight and an increased incidence of ossification variations were observed when rat

Version No: **3.3** Page **13** of **18** Issue Date: **12/07/2022**

TensorGrip L20 Canister Spray Adhesive

Print Date: 12/07/2022

dams were exposed to light aromatized solvent naphtha, by gavage, at 1250 mg/kg-bw per day. In addition, pregnant rats exposed by inhalation to hydrotreated heavy naphtha at 4679 mg/m3 delivered pups with higher birth weights. Cognitive and memory impairments were also observed in the offspring.

Low Boiling Point Naphthas [Site-Restricted]

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.
The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

LPG (LIQUEFIED PETROLEUM GAS)

No significant acute toxicological data identified in literature search. inhalation of the gas

Animal studies indicate that normal, branched and cyclic paraffins are absorbed from the gastrointestinal tract and that the absorption of

TensorGrip L20 Canister Spray Adhesive & HYDROCARBONS, C7-9, N-ALKANES, ISOALKANES, CYCLICS

TensorGrip L20 Canister

ACETATE

Spray Adhesive & METHYL

Animal studies indicate that normal, branched and cyclic paraffins are absorbed from the gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent than iso- or cyclo-paraffins.

The major classes of hydrocarbons are well absorbed into the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with fats in the diet. Some hydrocarbons may appear unchanged as in the lipoprotein particles in the gut lymph, but most hydrocarbons partly separate from fats and undergo metabolism in the gut cell. The gut cell may play a major role in determining the proportion of hydrocarbon that becomes available to be deposited unchanged in peripheral tissues such as in the body fat stores or the liver.

For methyl acetate:

Acute toxicity: Methyl acetate is a water-soluble substance with high volatility. In animal testing, the substance has narcotic properties at high concentration; this is soon reversible after exposure ends.

Methyl acetate is absorbed via the lungs. After absorption, it is broken down to methanol and acetic acid. The main breakdown product is methanol, which is itself metabolized to formic acid. Methanol is highly toxic, so methyl acetate is of concern for acute toxicity. In humans, accidental inhalation of vapours of methyl acetate caused severe headache and considerable sleepiness. Methyl acetate has proven to cause only weak skin irritation in humans. Eye irritation, however, was severe, but in animal testing was reversible after 7 days. Exposure to methyl acetate vapours causes irritation to the eyes and airways.

Sensitisation: Methyl acetate is not expected to sensitise the skin.

Repeat dose toxicity: Adequate data does not exist for repeated or prolonged exposure in humans. Methyl acetate may cause dryness and cracking of the skin.

Mutation-causing potential: In testing involving bacterial and animal cells, methyl acetate had negative results. Furthermore, the breakdown products, methanol and acetic acid, show no evidence for causing mutations. Methyl acetate should not be classified as causing mutations. Reproductive toxicity: There is no data on the reproductive toxicity of methyl acetate. Methanol, one of the breakdown products, showed some toxicity to the foetus and potential for birth defects, but at high concentrations only, which were toxic to the mother.

Acute Toxicity	×	Carcinogenicity	✓
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	✓	Aspiration Hazard	×

Legend

X - Data either not available or does not fill the criteria for classification

🧪 – Data available to make classification

SECTION 12 Ecological information

Toxicity

	Endpoint	Test Duration (hr)	Species	Value	Source
TensorGrip L20 Canister Spray Adhesive	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
hydrocarbons, C7-9, n-alkanes, isoalkanes, cyclics	EC50(ECx)	48h	Crustacea	4-10mg/l	Not Available
n-aikanes, isoaikanes, cyclics	EC50	48h	Crustacea	4-10mg/l	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	NOEC(ECx)	72h	Algae or other aquatic plants	>=120mg/l	1
methyl acetate	EC50	72h	Algae or other aquatic plants	>120mg/l	1
	EC50	48h	Crustacea	1026.7mg/l	1
	LC50	96h	Fish	250mg/l	1
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50(ECx)	96h	Algae or other aquatic plants	7.71mg/l	2
LPG (liquefied petroleum gas)	EC50	96h	Algae or other aquatic plants	7.71mg/l	2
	LC50	96h	Fish	24.11mg/l	2
Legend:	Ecotox databas		HA Registered Substances - Ecotoxicological Informatic Aquatic Hazard Assessment Data 6. NITE (Japan) - Bio		

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Version No: **3.3** Page **14** of **18** Issue Date: **12/07/2022**

TensorGrip L20 Canister Spray Adhesive Print Date: 12/07/2022

When released in the environment, alkanes don't undergo rapid biodegradation, because they have no functional groups (like hydroxyl or carbonyl) that are needed by most organisms in order to metabolize the compound.

However, some bacteria can metabolise some alkanes (especially those linear and short), by oxidizing the terminal carbon atom. The product is an alcohol, that could be next oxidised to an aldehyde, and finally to a carboxylic acid. The resulting fatty acid could be metabolised through the fatty acid degradation pathway.

For petroleum distillates:

Environmental fate:

When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradation-another fate process-can also be significant.

As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons.

Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants. The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes.

The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials. Biodegradation:

Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows:

- (1) n-alkanes, especially in the C10-C25 range, which are degraded readily;
- (2) isoalkanes:
- (3) alkenes;
- (4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms);
- (5) monoaromatics:
- (6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and
- (7) higher molecular weight cycloalkanes (which may degrade very slowly.

Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble, volatile and degradable compounds and the accumulation of those most resistant to these processes in residues.

When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL. Above the retention capacity, the NAPL becomes mobile and will move within the soil Bioaccumulation:

Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances. Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > ~4.5

In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential.

Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13–C15 isoalkanes, C12 alkenes, C12–C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12–C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs

These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however,

one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish.

In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000.

Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish.

This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to relatively rapid dispersal

Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish

Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L.

The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, However this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil" was also tested and a 96-hour LC50 of 12 mg/L. was determined The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species. The diatom Phaeodactylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga Isochrysis galbana was more tolerant to diesel fuel, with a 24-hour lowest-observed-effect concentration (LOEC) of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L. Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L. All populations of phytoplankton returned to a steady state within 5 days of exposure

In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded

Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality

for methyl actetate:

Environmental fate:

Biodegradation

The substance can be classified as "readily biodegradable" on the basis of an available study according to OECD-guideline 301 D. This closed bottle test indicates 74% biodegradation after 14 days, 75% after 19 days and 70% after 28 days. There is no information on possible intermediates before ultimate degradation of methyl acetate. Probably methanol and acetic acid could be intermediates of the biodegradation. The degradation of the possible intermediates is included in the results of the biodegradation test. Photodegradation

Direct photolysis of methyl acetate in the atmosphere is not to be expected. However, in the atmosphere gaseous methyl acetate reacts with hydroxyl radicals which have been formed photochemically. On the basis of an atmospheric concentration of the OH-radicals amounting to 5.10exp5 OH/cm3 and the rate constant (kdeg(air)) of 0.3182.10exp-12cm3.molecule-1.s-1, a half-life of 50.4 days is calculated for the photochemical degradation in the atmosphere. A half-life of 94 days was determined on the basis of laboratory investigations into photochemical degradation.

Hydrolysis

The hydrolysis of methyl acetate was examined in an older investigation from 1935. In this, a hydrolysis half-life of approximately 53 days at a temperature of 23.2 to 25.4 deg C was determined for methyl acetate (148.6 g/l). No information was provided on the pH value of the solution.

Hydrolysis half-lives of between approximately 63 days (pH = 8) and approximately 627 days (pH = 7) were calculated for the substance using QSAR calculations. Hydrolysis should

Version No: **3.3** Page **15** of **18** Issue Date: **12/07/2022**

TensorGrip L20 Canister Spray Adhesive

Print Date: 12/07/2022

therefore not represent a significant elimination process for methyl acetate in the environment.

Distribution

On account of the vapour pressure of 217 hPa, methyl acetate is expected to evaporate quickly from surfaces.

A Henrys Constant of 6.43 Pa m3/mol at 20 deg C is calculated from the data on the vapour pressure and water solubility of methyl acetate given in Section 1. Consequently, the substance is moderately volatile from an aqueous solution..

No bioaccumulation potential is to be expected due to the measured log Kow value for methyl acetate of 0.18. On the basis of this value the Koc is calculated as 12.99 l/kg and the partition coefficients can be calculated according to the organic carbon content in the individual environmental compartments.

Accumulation

No investigations on bioaccumulation are available. The measured log Kow of 0.18 does not provide any indication of a relevant bioaccumulation potential.

The calculated Koc value of 12.99 l/kg also does not indicate that a significant geoaccumulation potential is to be expected for methyl acetate. The substance may be washed out from soil to groundwater by rainwater depending on the elimination in soil by degradation and distribution.

Atmosphere

Due to the atmospheric half-life (t1/2 = 74 to 94 days), abiotic effects on the atmosphere, such as global warming and ozone depletion, are not to be expected in connection with methyl acetate

For n-Heptane: Log Kow: 4.66; Koc: 2400-8100; Half-life (hr) Air: 52.8; Half-life (hr) Surface Water: 2.9-312; Henry's atm m3 /mol: 2.06; BOD 5 (if unstated): 1.92; COD: 0.06; BCF: 340-2000; Log BCF: 2.53-3.31.

Atmospheric Fate: Breakdown of n-heptane by sunlight is not expected to be an important fate process. If released to the atmosphere, n-heptane is expected to exist entirely in the vapor phase, in ambient air. Reactions hydroxyl radicals in the atmosphere have been shown to be important. Night-time reactions with nitrate radicals may contribute to the atmospheric transformation of n-heptane, especially in urban environments. n-Heptane is not expected to be susceptible to direct breakdown by sunlight

Terrestrial Fate: n-Heptane is expected to be broken down by biological processes in the soil; however, evaporation and adsorption from soil are expected to be a more important fate processes. n-Heptane will be slightly mobile to immobile in soil.

Aquatic Fate: Breakdown of n-heptane by water is not expected to be an important fate process.

Biological breakdown may occur in water; however, evaporation is expected to be a more important fate process. The evaporation half-life for the substance from a model river is 2.9 hours and from a model pond is 13 days. In aquatic systems, n-heptane may partition from the water column to organic matter in sediments and suspended solids.

Ecotoxicity: Concentration of the substance in aquatic life may be important in aquatic environments. The substance is moderately toxic to goldfish; however n-heptane has low toxicity to golden orfe, western mosquitofish, Daphnia magna water fleas, and snail. The substance is toxic to opossum shrimp.

For n-Hexane: Log Kow: 3.17-3.94; Henry s Law Constant: 1.69 atm-m3 mol; Vapor Pressure: 150 mm Hg @ 25 C; Log Koc: 2.90 to 3.61. BOD 5, (if unstated): 2.21; COD: 0.04; ThOD: 3.52.

Atmospheric Fate: n-Hexane is not expected to be directly broken down by sunlight. The main atmospheric removal mechanism is through reactions with hydroxyl radicals, with an approximant half-life of 2.9 days. The smog-producing potential of n-hexane is very low, compared to other alkanes, or chlorinated VOCs. Hydroxyl ion reactions in the upper troposphere, therefore, are probably the primary mechanisms for n-hexane degradation in the atmosphere.

Terrestrial Fate: Surface evaporation is expected to be the main fate process of this substance in soil. The substance has a moderate ability to sorb to soil particles but, is expected to have low potential for leaching into the lower soil depths. n-Hexane is expected to generally stay near the soil surface and, if not appreciably sorbed into the soil matrix, will eventually evaporate. Exceptions would involve locations with shallow groundwater tables where large spills occur - in such cases, n-hexane would spread out to contaminate a large volume of soil. Once introduced into groundwater, n-hexane may be fairly persistent, since its degradation by water is slow and opportunities for biodegradation may be limited, (due to low oxygen conditions), or, where nutrients, such as nitrogen or phosphorus, are in limited supply. Biological breakdown is probably the most significant degradation mechanism in groundwater. Pseudomonas mendocina bacteria have been shown to break the substance down in groundwater and mixed/pure bacterial cultures can utilize the substance, in the presence of oxygen. The most important biological breakdown process involves the conversion of n-hexane to primary alcohols, aldehydes and, ultimately, into fatty acids. In general, unless the n-hexane is buried at some depth within a soil or sediment, evaporation is generally assumed to occur at a much more rapid rate than chemical or biochemical degradation processes.

Aquatic Fate: The dominant transport process from water is evaporation, with an estimated half-life of <3 hours. For standing bodies of water, a half-life no longer than 6.8 days is estimated. The substance has very low water solubility and is resistant to breakdown by water. Few data exist for the biological breakdown of n-hexane in water, however; this process is not considered to be as rapid as evaporation. N-Hexane may be persistent if released to deep sediment.

Ecotoxicity: This substance is not expected to concentrate/accumulate in aquatic organisms or the food chain. These substances are considered to be the most readily biodegradable fractions in petroleum, particularly when oxygen is present in solution. The substance is moderately toxic to rainbow trout, fathead minnow, bluegill, and Daphnia water fleas.

For Propane: Koc 460. log

Kow 2.36

Henry's Law constant of 7.07x10-1 atm-cu m/mole, derived from its vapour pressure, 7150 mm Hg, and water solubility, 62.4 mg/L. Estimated BCF: 13.1.

Terrestrial Fate: Propane is expected to have moderate mobility in soil. Volatilization from moist soil surfaces is expected to be an important fate process. Volatilization from dry soil surfaces is based vapor pressure. Biodegradation may be an important fate process in soil and sediment.

Aquatic Fate: Propane is expected to adsorb to suspended solids and sediment. Volatilization from water surfaces is expected and half-lives for a model river and model lake are estimated to be 41 minutes and 2.6 days, respectively. Biodegradation may not be an important fate process in water.

Ecotoxicity: The potential for bioconcentration in aquatic organisms is low.

Atmospheric Fate: Propane is expected to exist solely as a gas in the ambient atmosphere. Gas-phase propane is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 14 days and is not expected to be susceptible to direct photolysis by sunlight.

DO NOT discharge into sewer or waterways.

DO NOT discharge into sewer or waterwa

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
methyl acetate	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation	
methyl acetate	LOW (LogKOW = 0.18)	

Mobility in soil

Ingredient	Mobility
methyl acetate	MEDIUM (KOC = 3.324)

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Evaporate or incinerate residue at an approved site.
- ▶ Return empty containers to supplier.

Version No: **3.3** Page **16** of **18** Issue Date: **12/07/2022**

TensorGrip L20 Canister Spray Adhesive

Print Date: 12/07/2022

▶ Ensure damaged or non-returnable cylinders are gas-free before disposal.

SECTION 14 Transport information

Labels Required

Marine Pollutant
HAZCHEM

M 2YE

Land transport (ADG)

UN number	3501		
UN proper shipping name	CHEMICAL UNDER PRESSURE, FLAMMABLE, N.O.S. (contains LPG (liquefied petroleum gas))		
Transport hazard class(es)	Class 2.1 Subrisk Not Applicable		
Packing group	Not Applicable		
Environmental hazard	Not Applicable		
Special precautions for user	Special provisions 274 362 Limited quantity 0		

Air transport (ICAO-IATA / DGR)

UN number	3501			
UN proper shipping name	Chemical under pressure	Chemical under pressure, flammable, n.o.s. * (contains LPG (liquefied petroleum gas))		
Transport hazard class(es)	ICAO/IATA Class 2.1 ICAO / IATA Subrisk Not Applicable ERG Code 10L			
Packing group	Not Applicable			
Environmental hazard	Not Applicable			
Special precautions for user	Special provisions Cargo Only Packing Instructions Cargo Only Maximum Qty / Pack Passenger and Cargo Packing Instructions Passenger and Cargo Maximum Qty / Pack Passenger and Cargo Limited Quantity Packing Instructions Passenger and Cargo Limited Maximum Qty / Pack		A1 A187 218 75 kg Forbidden Forbidden Forbidden Forbidden	

Sea transport (IMDG-Code / GGVSee)

UN number	3501		
UN proper shipping name	CHEMICAL UNDER PRESSURE, FLAMMABLE, N.O.S. (contains LPG (liquefied petroleum gas))		
Transport hazard class(es)	IMDG Class 2.1 IMDG Subrisk Not Applicable		
Packing group	Not Applicable		
Environmental hazard	Not Applicable		
Special precautions for user	EMS Number Special provisions Limited Quantities	F-D, S-U 274 362 0	

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
hydrocarbons, C7-9, n-alkanes, isoalkanes, cyclics	Not Available
methyl acetate	Not Available

Version No: 3.3 Page 17 of 18 Issue Date: 12/07/2022

TensorGrip L20 Canister Spray Adhesive

Print Date: 12/07/2022

Product name	Group
LPG (liquefied petroleum gas)	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
hydrocarbons, C7-9, n-alkanes, isoalkanes, cyclics	Not Available
methyl acetate	Not Available
LPG (liquefied petroleum gas)	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

hydrocarbons, C7-9, n-alkanes, isoalkanes, cyclics is found on the following regulatory lists

 $\label{lem:condition} \textbf{Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals}$

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

methyl acetate is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

LPG (liquefied petroleum gas) is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Chemical Footprint Project - Chemicals of High Concern List

Australian Inventory of Industrial Chemicals (AIIC)

National Inventory Status

National Inventory	Status	
Australia - AIIC / Australia Non-Industrial Use	Yes	
Canada - DSL	Yes	
Canada - NDSL	No (hydrocarbons, C7-9, n-alkanes, isoalkanes, cyclics; methyl acetate; LPG (liquefied petroleum gas))	
China - IECSC	Yes	
Europe - EINEC / ELINCS / NLP	Yes	
Japan - ENCS	No (hydrocarbons, C7-9, n-alkanes, isoalkanes, cyclics)	
Korea - KECI	Yes	
New Zealand - NZIoC	Yes	
Philippines - PICCS	Yes	
USA - TSCA	Yes	
Taiwan - TCSI	Yes	
Mexico - INSQ	Yes	
Vietnam - NCI	Yes	
Russia - FBEPH	Yes	
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.	

SECTION 16 Other information

Revision Date	12/07/2022
Initial Date	16/05/2022

SDS Version Summary

Version	Date of Update	Sections Updated
2.3	12/07/2022	Ingredients, Physical Properties, Name

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC—TWA: Permissible Concentration-Time Weighted Average PC—STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

Version No: 3.3 Page 18 of 18 Issue Date: 12/07/2022

TensorGrip L20 Canister Spray Adhesive

Print Date: 12/07/2022

ES: Exposure Standard OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers
ENCS: Existing and New Chemical Substances Inventory
KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals
PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory
FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Powered by AuthorITe, from Chemwatch.